
University of A Coruña

Computer Architecture Group

Big Data Evaluator 2.0: User Guide

Authors:
Jorge Veiga, Roberto R. Expósito, Guillermo L. Taboada and

Juan Touriño

March 2, 2016

Contents

1 Overview 3

2 Configuration of the experiments 3

3 Execution 11

4 Evaluation outcomes 11
4.1 Log & configuration . 11
4.2 Performance . 11
4.3 Resource Utilization . 11

A About Open Grid Scheduler/Grid Engine 14

B About Environment Modules 14

C System Requirements 14

1 Overview

The Big Data Evaluator 2.0 (BDEv) 1 is an evaluation tool to extract valuable information about
the performance, scalability and resource efficiency of several Big Data frameworks. It allows
to compare several solutions by means of different workloads, including micro-benchmarks and
real-world applications.

BDEv uses multiple user-defined parameters to unify of the configuration the solutions, en-
suring a fair comparison between them. In each experiment, the user can select the workloads
and the solutions to be run. Several cluster sizes can be used in order to check the scalabil-
ity of the frameworks and ensure an optimal use of the nodes of the system. The user can
also determine the number of times each workload is executed in order to obtain statistical
information.

This user guide aims to provide a clear explanation of the features available in BDEv, as
long as to explain how to configure and run the evaluations.

2 Configuration of the experiments

The configuration of a experiment affects the following files:

• hostfile

• bdev-conf.sh

• system-conf.sh

• experiment-conf.sh

• core-conf.sh

• hdfs-conf.sh

• mapred-conf.sh

• yarn-conf.sh

• solutions-conf.sh

• solutions.lst

• benchmarks.lst

• cluster sizes.lst

The environment variables and the configuration files are explained below, including the
default values of the parameters.

Environment variables There are two environment variables that BDEv uses to know where
to find the configuration of the experiments. First, the EXP DIR variable determines the direc-
tory that contains the configuration files mentioned above. This feature enables to set up
different evaluations by means of several experiment directories. If this variable is not set, the
value taken by default is $BDEv_HOME/experiment. Second, the HOSTFILE variable contains the
path to the hostfile. If this variable is not set, the value taken by default is $EXP_DIR/hostfile.

export EXP_DIR=$BDEv_HOME/experiment

export HOSTFILE=$EXP_DIR/hostfile

1BDEv has evolved from MREv, a MapReduce Evaluation tool aimed to compare the performance of HPC-
oriented MapReduce solutions. Apart from that kind of solutions, BDEv also evaluates new types of Big Data
frameworks like Spark and Flink

hostfile This file lists the computing nodes that will be used in the experiments. The first line
of the file will be the master, and the remaining lines will be the slaves. NOTE: the “localhost”
host name can only be used if the evaluation is going to run on local, instead the user must
specify the hostname that corresponds to the host.

localhost

localhost

bdev-con.sh This file contains some parameters that configure the behaviour of BDEv along
the experiments. First, the ENABLE PLOT parameter determines if BDEv will generate perfor-
mance graphs of the execution of the workloads. Similarly, ENABLE STAT is set to perform the
stat recording when executing the workloads, and generating the graphs afterwards. ENABLE ILO

can be set in order to record power consumption measurements using the HP-iLO technology
(requires the previous instalation of this technology). DEFAULT TIMEOUT defines the maximum
execution time of a workload used by default. Those which run above this limit will be killed,
and the execution of the solution will be finished. Of course, this BDEv feature can be disabled
by setting DEFAULT TIMEOUT to 0. Finally, the directory where BDEv will write the results of
the experiment can also be configured by using the OUT DIR variable. If this variable is not
set, the value taken by default is $PWD/BDEv_OUT. This file also contains some configuration
parameters used when enabling the record of resource stat or HP-iLO measurements.

#!/bin/sh

Configuration parameters regarding BDEv behaviour

export ENABLE_PLOT="true" # Enable plot generation

export ENABLE_STAT="false" # Enable resource stats generation

export ENABLE_ILO="false" # Enable HP-iLO power measurements

export DEFAULT_TIMEOUT="28800" # Default workload timeout

export OUT_DIR=$PWD/${METHOD_NAME}_OUT # Default report output directory

Resource stats

export STAT_SECONDS_INTERVAL=5 # Interval (seconds) for each sample

export STAT_WAIT_SECONDS=20 # Waiting time (seconds) before each benchmark execution

HP-iLO

export ILO_SECONDS_INTERVAL=5 # Interval (seconds) for each sample

export ILO_WAIT_SECONDS=60 # Waiting time (seconds) before each benchmark execution

export ILO_USERNAME="ilo_user" # User name for ILO interface

export ILO_PASSWD="..ilo_user.." # Password for ILO user

export ILO_BASE_IP="192.168.255" # Base IP for ILO interfaces

export ILO_MASTER="localhost" # Node which can connect to the ILO interface for all the

slaves (localhost means to use the master node)

system-conf.sh This file contains the parameters related to the system where BDEv is being
run. Some of them are automatically detected from the system, but can also be tuned by the
user in order to maximize the leveraging of the system resources.

#!/bin/sh

Configuration parameters regarding the host system characteristics

export TMP_DIR=/scratch/$USER/hadoop # Directory used to store tmp files in each node

export LOCAL_DIRS="" # List of directories used to store local data in each node

export GBE_INTERFACE="eth1" # GbE interface to use in the nodes

export IPOIB_INTERFACE="ib0" # IPoIB interface to use in the nodes

export CPUS_PER_NODE=‘grep "^physical id" /proc/cpuinfo | sort -u | wc -l‘ # CPUs per

node

export CORES_PER_CPU=‘grep "^core id" /proc/cpuinfo | sort -u | wc -l‘ # Cores per CPU

export CORES_PER_NODE=$(($CPUS_PER_NODE * $CORES_PER_CPU)) # Cores per node

export MEMORY_PER_NODE=$((‘grep MemTotal /proc/meminfo | awk ’{print $2}’‘/1024)) #

Memory per node

export MASTER_HEAPSIZE=‘op_int "$MEMORY_PER_NODE / 4"‘ # Heap size per master daemon (

MB), e.g. NameNode, ResourceManager

export SLAVE_HEAPSIZE=1024 # Heap size per slave daemon (MB), e.g. DataNode,

NodeManager

export ENABLE_MODULES="false" # Enable use of modules environment

export MODULE_JAVA="java" # Java module

export MODULE_MPI="mvapich2" # MPI module

experiment-conf.sh This file sets the configuration of the benchmarks, including the prob-
lem size and additional parameters, as well as the number of times each one is executed.
Moreover, it also contains the METHOD COMMAND variable, which contains the action to run in
batch mode during the command benchmark. Additionally, METHOD PREPARE COMMAND is called
to set up the input datasets needed for METHOD COMMAND. This enables to perform accurate per-
formance and resource utilization monitoring, without taking into account the data generation
or the copy to HDFS. This file also allows to configure specific timeouts for each benchmark.

#!/bin/sh

Configuration of the workloads

export NUM_EXECUTIONS=1 # Number of times each benchmark is executed

#Datasize for Wordcount

export WORDCOUNT_DATASIZE=$((1 * 1024 * 1024)) # Size of the input data set (Bytes)

#Sort

export SORT_DATASIZE=$((1 * 1024 * 1024)) # Size of the input data set (Bytes)

#Terasort

export TERASORT_DATASIZE=$((1 * 1024 * 1024)) # Size of the input data set (Bytes)

#Grep

export GREP_DATASIZE=$((1 * 1024 * 1024)) # Size of the input data set (Bytes)

export GREP_REGEX=".*toxoplasmosis.*" # Regular expression

#TestDFSIO

export DFSIO_N_FILES=32 # Number of files to generate

export DFSIO_FILE_SIZE=10 # Size of each file (MBytes)

#PageRank

export PAGERANK_PAGES=50 # Number of pages in the data set

export PAGERANK_MAX_ITERATIONS=1 # Maximum number of iterations

#Connected Components

export CC_PAGES=50 # Number of pages in the data set

#K-Means

export KMEANS_NUM_OF_CLUSTERS=5 # Number of clusters in the data set

export KMEANS_DIMENSIONS=3 # Number of dimensions of the data set

export KMEANS_NUM_OF_SAMPLES=30000 # Total number of samples

export KMEANS_SAMPLES_PER_INPUTFILE=6000 # Number of samples per input file

export KMEANS_K=10 # K constant

export KMEANS_MAX_ITERATIONS=1 # Maximum number of iterations

#Bayes

export BAYES_PAGES=25000 # Number of pages in the data set

export BAYES_CLASSES=10 # Number of classes in the data set

export BAYES_NGRAMS=1 # Number of NGrams in the data set

#Aggregation

export AGGREGATION_PAGES=120 # Number of pages in the data set (nodes of the graph)

export AGGREGATION_USERVISITS=1000 # Number of user visits in the data set (edges of

the graph)

#Join

export JOIN_PAGES=120 # Number of pages in the data set (nodes of the graph)

export JOIN_USERVISITS=1000 # Number of user visits in the data set (edges of the graph

)

#Scan

export SCAN_PAGES=120 # Number of pages in the data set (nodes of the graph)

export SCAN_USERVISITS=1000 # Number of user visits in the data set (edges of the graph

)

#Command

#export METHOD_COMMAND= # Command to run in batch mode

#export METHOD_PREPARE_COMMAND= # Command to run to set up input datasets

#TIMEOUT

#export TESTDFSIO_TIMEOUT="0"

#export WORDCOUNT_TIMEOUT="0"

#export SORT_TIMEOUT="0"

#export TERASORT_TIMEOUT="0"

#export GREP_TIMEOUT="0"

#export PAGERANK_TIMEOUT="0"

#export CC_TIMEOUT="0"

#export KMEANS_TIMEOUT="0"

#export BAYES_TIMEOUT="0"

#export AGGREGATION_TIMEOUT="0"

#export JOIN_TIMEOUT="0"

#export SCAN_TIMEOUT="0"

#export COMMAND_TIMEOUT="0"

core-conf.sh This file contains configuration parameters which are related to the core-site.xml
file of Hadoop configuration.

#!/bin/sh

Configuration parameters corresponding with the core-site.xml file of Hadoop

configuration

export FS_PORT=8020 # Filesystem port number

hdfs-conf.sh This file contains configuration parameters which are related to the hdfs-site.xml
file of Hadoop configuration.

#!/bin/sh

Configuration parameters corresponding with the hdfs-site.xml file of Hadoop

configuration

export BLOCKSIZE=$((128*1024*1024)) # HDFS block size (Bytes)

export REPLICATION_FACTOR=3 # Number of block replications

mapred-conf.sh This file contains configuration parameters which are related to the mapred-
site.xml file of Hadoop configuration.

#!/bin/sh

Configuration parameters corresponding with the mapred-site.xml file of Hadoop

configuration

if [[$CORES_PER_NODE == 1]]

then

export MAPPERS_PER_NODE=1 # Maximum number of map tasks per node

export REDUCERS_PER_NODE=1 # Maximum number of reduce tasks per node

else

export MAPPERS_PER_NODE=$(($CORES_PER_NODE / 2)) # Maximum number of map

tasks per node

export REDUCERS_PER_NODE=$(($CORES_PER_NODE / 2)) # Maximum number of reduce

tasks per node

fi

export MAP_MEMORY=$CONTAINER_MEMORY # The amount of memory to request from YARN per map

task (MB)

export REDUCE_MEMORY=$CONTAINER_MEMORY # The amount of memory to request from YARN per

reduce task (MB)

export MAP_HEAPSIZE_FACTOR=0.90 # Percentage of the mapper memory allocated to heap

export REDUCE_HEAPSIZE_FACTOR=0.90 # Percentage of the reducer memory allocated to heap

export MAP_HEAPSIZE=‘op_int "$MAP_MEMORY * $MAP_HEAPSIZE_FACTOR"‘ # Heap size per map

task (MB)

export REDUCE_HEAPSIZE=‘op_int "$REDUCE_MEMORY * $REDUCE_HEAPSIZE_FACTOR"‘ # Heap size

per reduce task (MB)

export IO_SORT_MB=$(($MAP_HEAPSIZE / 4)) # Total amount of buffer memory to use while

sorting files (MB)

export IO_SORT_FACTOR=$(($IO_SORT_MB / 10)) # Number of streams to merge at once

while sorting files

export IO_SORT_RECORD_PERCENT=0.05 # The percentage of io.sort.mb dedicated to tracking

record boundaries

export IO_SORT_SPILL_PERCENT=0.80 # The soft limit in either the buffer or record

collection buffers

export SHUFFLE_PARALLELCOPIES=20 # Default number of parallel transfers run by reduce

during the copy(shuffle) phase

export MR_JOBHISTORY_SERVER="false" # Start the MapReduce JobHistoryServer

yarn-conf.sh This file contains configuration parameters which are related to the yarn-
site.xml file of Hadoop configuration.

#!/bin/sh

Configuration parameters corresponding with the yarn-site.xml file of Hadoop

configuration

export APP_MASTER_HEAPSIZE=1024 # Application Master heapsize

export APP_MASTER_MEMORY=‘op_int "$APP_MASTER_HEAPSIZE * 1.5"‘ # Application Master

memory

export NODEMANAGER_MEMORY_FACTOR=0.95 # Percentage of the node memory available for

allocation

export NODEMANAGER_MEMORY=‘op_int "$MEMORY_PER_NODE * $NODEMANAGER_MEMORY_FACTOR"‘ #

Memory available for allocation

export NODEMANAGER_VCORES=$CORES_PER_NODE # Number of cores per NodeManager

export NODEMANAGER_MIN_ALLOCATION=256 # Minimum memory allocation for containers in

NodeManager

export NODEMANAGER_INCREMENT_ALLOCATION=256 # Container memory allocations are rounded

up to the nearest multiple of this number

export CONTAINER_MEMORY=‘op_int "($NODEMANAGER_MEMORY - $APP_MASTER_MEMORY) / $CORES_

PER_NODE"‘ # Memory size for containers

solutions-conf.sh This file contains configuration parameters which are specific to each so-
lution, as well as some variables for Apache Mahout and Apache Hive.

#!/bin/sh

Configuration parameters of the different frameworks

RDMA-Hadoop/RDMA-Hadoop-2

export RDMA_HADOOP_IB_ENABLED="true" # Enable RDMA connections through InfiniBand (IB)

export RDMA_HADOOP_ROCE_ENABLED="false" # Enable RDMA connections through RDMA over

Converged Ethernet (RoCE)

export RDMA_HADOOP_DFS_REPLICATION_PARALLEL="false" # Enable parallel replication

export RDMA_HADOOP_DFS_SSD_USED="false" # Enable SSD-oriented optimizations for HDFS

export RDMA_HADOOP_DISK_SHUFFLE_ENABLED="true" # Enable disk-based shuffle

Spark (common)

export SPARK_HADOOP_HOME=${SOLUTIONS_DIST_DIR}/Hadoop-YARN/2.7.2

export SPARK_DRIVER_HEAPSIZE=$MASTER_HEAPSIZE # Driver heapsize

export SPARK_DRIVER_CORES=1 # Number of cores of the driver

export SPARK_EXECUTORS_PER_NODE=1 # Number of executors (workers) per node

export SPARK_CORES_PER_EXECUTOR=$CORES_PER_NODE # Number of cores per executor

export SPARK_LOCAL_DIRS=$LOCAL_DIRS # Executor temporary directories

Spark standalone

export SPARK_EXECUTOR_HEAPSIZE_FACTOR=0.90 # Percentage of the executor heapsize

allocated to heap

export SPARK_EXECUTOR_HEAPSIZE=‘op_int "($CONTAINER_MEMORY * $SPARK_CORES_PER_EXECUTOR)

* $SPARK_EXECUTOR_HEAPSIZE_FACTOR"‘ # Executor heapsize

Spark on YARN (client mode)

export SPARK_AM_HEAPSIZE=1024 # YARN Application Master heapsize

export SPARK_YARN_EXECUTOR_MEMORY_OVERHEAD=0.10 # Percentage of the executor heapsize

not allocated to heap in YARN

export SPARK_YARN_EXECUTOR_MEMORY=‘op_int "($CONTAINER_MEMORY * $SPARK_CORES_PER_

EXECUTOR)"‘ # Amount of memory allocated to the executor in YARN

export SPARK_YARN_EXECUTOR_HEAPSIZE_FACTOR=‘op "1 - $SPARK_YARN_EXECUTOR_MEMORY_

OVERHEAD"‘ # Percentage of the executor heapsize allocated to heap in YARN

export SPARK_YARN_EXECUTOR_HEAPSIZE=‘op_int "$SPARK_YARN_EXECUTOR_MEMORY * $SPARK_YARN_

EXECUTOR_HEAPSIZE_FACTOR"‘ # Executor heapsize in YARN

RDMA-Spark

export RDMA_SPARK_IB_ENABLED="true" # Enable RDMA connections through InfiniBand (IB)

export RDMA_SPARK_ROCE_ENABLED="false" # Enable RDMA connections through RDMA over

Converged Ethernet (RoCE)

export RDMA_SPARK_SHUFFLE_CHUNK_SIZE=524288 # Chunk size for shuffle

Flink (common)

export FLINK_HADOOP_HOME=${SOLUTIONS_DIST_DIR}/Hadoop-YARN/2.7.2

export FLINK_TASKMANAGER_SLOTS=$CORES_PER_NODE # Number of slots per TaskManager

export FLINK_TASKMANAGER_TMP_DIRS=$LOCAL_DIRS # TaskManager temporary directories

export FLINK_TASKMANAGER_NETWORK_NUMBEROFBUFFERS_PER_SLAVE=‘op_int " $FLINK_TASKMANAGER

_SLOTS ^ 2 * 6 "‘ # Number of network buffers per slave

Flink standalone

export FLINK_JOBMANAGER_HEAPSIZE=$MASTER_HEAPSIZE # JobManager heapsize

export FLINK_TASKMANAGER_HEAPSIZE_FACTOR=0.85 # Percentage of the TaskManager heapsize

allocated to heap

export FLINK_TASKMANAGER_HEAPSIZE=‘op_int "($CONTAINER_MEMORY * $FLINK_TASKMANAGER_

SLOTS) * $FLINK_TASKMANAGER_HEAPSIZE_FACTOR"‘ # TaskManager heapsize

Flink on YARN

export FLINK_YARN_JOBMANAGER_MEMORY=2048 # JobManager memory in YARN

export FLINK_YARN_TASKMANAGER_MEMORY=‘op_int "($CONTAINER_MEMORY * $FLINK_TASKMANAGER_

SLOTS) - $FLINK_YARN_JOBMANAGER_MEMORY"‘ # TaskManager memory in YARN

DataMPI

export DATAMPI_HADOOP_HOME=${SOLUTIONS_DIST_DIR}/Hadoop/1.2.1

export DATAMPI_TASK_HEAPSIZE_FACTOR=0.90 # Percentage of the task memory allocated to

heap

export DATAMPI_TASK_HEAPSIZE=‘op_int "$CONTAINER_MEMORY * $DATAMPI_TASK_HEAPSIZE_FACTOR

"‘ # Task heapsize

Mellanox UDA library

export UDA_VERSION=3.3.2 # UDA library version

export UDA_LIB_DIR=$SOLUTIONS_LIB_DIR/uda-$UDA_VERSION # UDA library directory

Apache Mahout

export MAHOUT_HEAPSIZE=$MASTER_HEAPSIZE # Heap size for Mahout master process

export HADOOP_1_MAHOUT_VERSION=0.11.1 # Mahout version for Hadoop 1

export HADOOP_2_MAHOUT_VERSION=0.11.1 # Mahout version for Hadoop 2 (YARN)

Apache Hive

export HADOOP_1_HIVE_VERSION=1.2.1 # Hive version for Hadoop 1

export HADOOP_2_HIVE_VERSION=1.2.1 # Hive version for Hadoop 2 (YARN)

solutions.lst This file contains the solutions to be used in the experiment, specifying the
framework, its version and the network interface to be configured.

#Framework #Version #Network interface

#Hadoop 1.2.1 GbE

#Hadoop 1.2.1 IPoIB

#Hadoop-YARN 2.7.1 GbE

#Hadoop-YARN 2.7.1 IPoIB

Hadoop-YARN 2.7.2 GbE

#Hadoop-YARN 2.7.2 IPoIB

#Hadoop-UDA 1.2.1 IPoIB

#Hadoop-UDA-YARN 2.7.2 IPoIB

#RDMA-Hadoop 0.9.9 GbE

#RDMA-Hadoop 0.9.9 IPoIB

#RDMA-Hadoop-2 0.9.8 GbE

#RDMA-Hadoop-2 0.9.8 IPoIB

#DataMPI 0.6.0 GbE

#DataMPI 0.6.0 IPoIB

#Spark 1.5.2 GbE

#Spark 1.5.2 IPoIB

#Spark-YARN 1.5.2 GbE

#Spark-YARN 1.5.2 IPoIB

#Spark 1.6.0 GbE

#Spark 1.6.0 IPoIB

#Spark-YARN 1.6.0 GbE

#Spark-YARN 1.6.0 IPoIB

#RDMA-Spark 0.9.1 GbE

#RDMA-Spark 0.9.1 IPoIB

#RDMA-Spark-YARN 0.9.1 GbE

#RDMA-Spark-YARN 0.9.1 IPoIB

#Flink 0.10.2 GbE

#Flink 0.10.2 IPoIB

#Flink-YARN 0.10.2 GbE

#Flink-YARN 0.10.2 IPoIB

benchmarks.lst This file contains the benchmarks to be used in the experiment.

Benchmarks to run in the evaluation

#testdfsio # Tests the read and write throughput of HDFS

wordcount # Counts the number of times each word appears in the input data set

#sort # Sorts the input data set

#grep # Counts the matches of a regular expression in the input data set

#terasort # Sorts 100B-sized <key,value> tuples

#pagerank # Graph algorithm which ranks elements by counting the number and quality

of the links to each one

#connected_components # Graph algorithm which finds the connected components of a graph

#bayes # Performs the Naive Bayesian classification algorithm

#kmeans # Clustering algorithm which partitions N observations into K clusters

#aggregation # SQL-based query which sums the values from a column

#join # SQL-based query which joins two tables

#scan # SQL-based query which extracts the rows that match a certain pattern

#command # Executes user-defined actions (interactive or batch)

cluster sizes.lst This file contains the cluster sizes with which the user wants to run the ex-
periments. Additionally, the cluster size can be set to the maximum number of nodes available.

#3

#5

#9

#13

MAX

3 Execution

The following command starts the experiments:

bash BDEv/bin/run.sh

4 Evaluation outcomes

The results from the execution will be found in the $OUT DIR directory, having the structure
shown in Figure 1.

4.1 Log & configuration

BDEv creates separate log and configuration directories for each framework and stores them
at {cluster_size}/{framework}. For example, the configuration directory of Hadoop-2.7.1-
IPoIB with 5 nodes is report_BDEv_03_02_12-00-00/5/Hadoop-2.7.1-IPoIB/etc/hadoop

and its log directory is report_BDEv_03_02_12-00-00/5/Hadoop-2.7.1-IPoIB/log. Both
directories can be used to check the configuration generated by BDEv and the execution of
the workloads. Moreover, this feature enables to run simultaneous evaluations of the same
framework using different configurations.

4.2 Performance

The performance results in terms of time are available in the graphs subdirectory. For exam-
ple, for the Wordcount benchmark, they can be found in the report_BDEv_03_02_12-00-00/

graphs/wordcount.eps file. For each cluster size, the graph depicts the average, maximum
and minimum execution times taken by each framework to perform the workload.

4.3 Resource Utilization

The resource utilization results from the execution of a benchmark can be found at {cluster_
size}/{framework}/{benchmark}_{num_execution}/stat_records. For example, the val-
ues of the first execution of Wordcount using Hadoop-2.7.1-IPoIB on 5 nodes are at report_

BDEv_03_02_12-00-00/5/Hadoop-2.7.1-IPoIB/wordcount_1/stat_records. This directory
contains one subdirectory for the values of each cluster node, plus another one for the average
values among the slave nodes.

The resource utilization graphs are not automatically generated by BDEv in order to pre-
vent the apparition of an excessively number of unnecessary files. The user can generate them
by running the script gen_graphs.eps, which contains the command lines needed for gener-
ating the resource utilization graphs contained in that directory. These graphs include CPU
utilization (cpu_stat.eps), CPU load (cpu_load_stat.eps), memory usage (mem_stat.eps),
disk read/write (dsk_sda_rw_stat.eps), disk utilization (dsk_sda_util_stat.eps) and net-
work send/recv (net_eth1_stat.eps, net_ib0_stat.eps). Disks (sda) and network interfaces
(eth1, ib0) are automatically detected by BDEv. For some resources, like CPU utilization,

there are different visualization modes that allow to see the results individually (with lines,
cpu_stat.eps) or as a whole (with stacked values, cpu_stat_stacked.eps).

BDEv OUT

report BDEv 03 02 12-00-00

hostfile...Nodes used in the evaluation

hostfile.gbe ...GbE nodes used in the evaluation

hostfile.ipoib..IPoIB nodes used in the evaluation

log ..Execution log

summary..Experiments configuration and main results

5...Output directory for cluster size 5

Hadoop-2.7.1-GbE..............................Output directory for Hadoop-2.7.1-GbE

Hadoop-2.7.1-IPoIB..........................Output directory for Hadoop-2.7.1-IPoIB

etc

hadoop..Hadoop configuration directory

logs...Hadoop log directory

wordcount 1......................Output directory for the 1st execution of Wordcount

elapsed time..Elapsed seconds

output..Workload output

stat records...Statistics directory

log ..Stat graphs generation log

avg ...Average statistics directory

gen graphs.sh Script to generate resource utilization graphs

cpu stat.dat..................................CPU utilization results data file

load stat.dat......................................CPU load results data file

dsk sda rw stat.datDisk read/write results data file

dsk sda util stat.dat.......................Disk utilization results data file

mem stat.dat...Memory results data file

net eth1 stat.dat..............................GbE network results data file

net ib0 stat.dat..............................IPoIB network results data file

...

node-0..Node 0 (master) statistics directory

...

wordcount 2Output directory for the 2nd execution of Wordcount

...

Hadoop-2.7.1-UDA..............................Output directory for Hadoop-2.7.1-UDA

...

9...Output directory for cluster size 9

graphs...Performance graphs directory

log...Graph generation log

wordcount.epsTime results for the Wordcount benchmark (graph)

wordcount.dat....................Time results for the Wordcount benchmark (data file)

Figure 1: BDEv output directory structure

A About Open Grid Scheduler/Grid Engine

As most supercomputers use a batch-queuing system for distributed resource management,
BDEv is aware of the environment variables and connection constraints that are typically
present in these cases. The correct behaviour of BDEv under this kind of systems has been
tested with the Open Grid Scheduler/GE (OGS/GE).

BDEv will detect the PE HOSTFILE environment and use it to read the compute nodes. In
this case, no HOSTFILE variable will be needed, although it can also be set. Moreover, the
ssh connections used to launch the different framework daemons do not work properly under
OGS/GE, so BDEv performs a light modification to enable their execution.

B About Environment Modules

BDEv is aware of the use of Modules for dynamically modifying the user’s environment. If
enabled in the configuration, BDEv will use it for loading the Java and MPI environment
variables.

C System Requirements

The following packages need to be installed:

• Java JRE 1.7 (always needed)

• Gnuplot 4.4 (needed for generating the graphs)

• MPI 2 (needed for DataMPI)

2DataMPI has been tested using Mvapich2

	Overview
	Configuration of the experiments
	Execution
	Evaluation outcomes
	Log & configuration
	Performance
	Resource Utilization

	About Open Grid Scheduler/Grid Engine
	About Environment Modules
	System Requirements

