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Optimization of real-world MapReduce applications
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Abstract—Apache Hadoop is a widely used MapReduce frame-
work for storing and processing large amounts of data. However,
it presents some performance issues that hinder its utilization
in many practical use cases. Although existing alternatives like
Spark or Hama can outperform Hadoop, they require to rewrite
the source code of the applications due to API incompatibili-
ties. This paper studies the use of Flame-MR, an in-memory
processing architecture for MapReduce applications, to improve
the performance of real-world use cases in a transparent way
while keeping application compatibility. Flame-MR adapts to
the characteristics of the workloads, managing efficiently the
use of custom data formats and iterative computations, while
also reducing workload imbalance. The experimental evaluation,
conducted in high performance clusters and the Microsoft Azure
cloud, shows a clear outperformance of Flame-MR over Hadoop.
In most cases, Flame-MR reduces the execution times by more
than a half.

Index Terms—Big Data, MapReduce, performance optimiza-
tion, bioinformatics, visualization

I. INTRODUCTION

Nowadays, Big Data applications are employed in a wide
range of industrial and research fields to extract meaningful
information from large datasets. The adoption of user-friendly
technologies like the MapReduce programming model [1]
has allowed non-expert programmers to develop large-scale
distributed applications without needing to implement low-
level functionalities such as data movement and parallelism.
This enables them to focus on the actual data processing
needed to calculate the desired result.

However, MapReduce applications do not always leverage
the computational capabilities of the underlying system. This
is often caused by performance drawbacks in the design of
popular MapReduce frameworks like Hadoop [2], which incurs
limited efficiency on resource usage and data pipelining. More-
over, non-expert programmers can introduce inefficiencies in
their applications due to the unawareness of certain framework
functionalities (e.g. custom data formats). Although more
advanced alternatives like Spark [3] and Hama [4] would allow
improving the performance of existing Hadoop workloads,
they require to rewrite the source code completely, and so are
not always a feasible option. To solve this problem, new in-
memory frameworks have been developed to transparently im-
prove the performance of existing Hadoop applications, such
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as Flame-MR [5], [6]. This framework allows accelerating
such applications without changing their source code.

In our previous work [6], the acceleration of Flame-MR was
experimentally demonstrated by conducting performance eval-
uations with synthetic benchmarks. However, the performance
of these benchmarks may not always correspond with the one
that can be obtained in practical scenarios. This paper aims to
overcome this limitation by presenting an in-depth analysis of
the performance benefits provided by Flame-MR using three
real-world Big Data applications. The main contributions are:

• The identification of significant differences between real-
world applications and standard benchmarks, which un-
derscores the importance of using real cases when eval-
uating Big Data frameworks.

• A detailed description of the techniques used by Flame-
MR to adapt to the characteristics of real-world ap-
plications, like custom input and output formats and
data objects. These techniques provide portability while
maintaining performance optimizations.

• An improved version of Flame-MR that includes a new
load balancing mode to speed up the processing of
skewed datasets.

• The optimization of three real Hadoop applications with
Flame-MR to justify its efficiency by alleviating code
inefficiencies and load balancing problems. Performance
improvements higher than 40% are obtained in all cases.

The rest of the paper is organized as follows: Sections II
and III introduce the background and related work, respec-
tively. Sections IV, V and VI analyze the optimization of three
use cases based on the MapReduce model. First, Section IV
describes the optimization of VELaSSCo, a visualization ar-
chitecture for simulation data. Second, Section V analyzes
CloudRS, a bioinformatics application for error removal in
genomic datasets. Third, Section VI presents MarDRe, another
genomic application that removes duplicate and near-duplicate
reads. Finally, Section VII provides some general conclusions
about the results gathered in the previous use cases.

II. BACKGROUND

The MapReduce programming model was originally pro-
posed by Google in [1]. This model allows developing large-
scale Big Data workloads by keeping some implementation
details such as parallelization and data communication hidden
to the programmer. The only thing that has to be defined are
the data processing functions, map and reduce, that operate
the input data represented in form of key-value pairs. The map
function processes each input pair independently to extract the
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Figure 1: Hadoop data flow with multiple map and reduce tasks

relevant attributes and the reduce function operates them to get
a final result.

Nowadays, the de-facto standard implementation of MapRe-
duce is Hadoop [2], an open-source Java-based framework.
It mainly consists of two parts, the MapReduce data engine
and the Hadoop Distributed File System (HDFS) [7], which
distributes the storage of large datasets over the nodes of
a cluster. Hadoop workloads commonly use the MapReduce
model to process textual data stored in HDFS, following
several steps: input, map, shuffle, merge, reduce and output.
These steps are depicted in Figure 1. As can be seen, the
input dataset stored in HDFS is divided into many splits that
are read by map operations to extract the relevant key-value
pairs. These key-value pairs are partitioned, sorted by key and
sent to the nodes where they will be merged to form the reduce
input. Each reduce operation reads the pairs contained in its
input partition, processing them to generate the output result
that is written to HDFS.

Hadoop can adapt its behavior to the particular needs
of each application, providing a wide set of configuration
options to do so. This includes the setting of some software
components defined via Java interfaces, modifying their im-
plementation according to the specific computation that the
user needs to perform. For example, the user can configure a
different input and output formatter class if the data is not in
textual format. Similarly, users can use primitive data types
included in Hadoop or define their own ones by developing a
custom implementation of the Writable interface. This inter-
face establishes the methods that the custom data types need
to implement, which are mandatory to serialize and compare
the data objects.

Many applications use Hadoop to carry out MapReduce
workloads. However, Hadoop presents some performance bot-
tlenecks that hinder its utilization for large-scale analytics due
to poor resource utilization and inefficient data parallelism.
This situation has caused the appearance of several alternative
frameworks like Spark [3] and Hama [4], which can be

used to execute Big Data workloads with a more flexible
API and increased performance. However, rewriting existing
Hadoop applications to the new APIs generally requires a
significant programming effort. Furthermore, the source code
is not always publicly available, which precludes the users
from rewriting it.

Our previous work focused on the development of Flame-
MR [5], an easy-to-use MapReduce framework that gives
solution to this problem by accelerating Hadoop applications
without changing the source code defined by the user. Flame-
MR replaces transparently the underlying implementation of
the Hadoop MapReduce data engine by an in-memory archi-
tecture that leverages system resources efficiently.

The operation of Flame-MR is based on the deployment of
several Worker processes over the nodes of a cluster. Each
Worker is in charge of executing multiple map and reduce
operations by using an event-driven architecture shown in
Figure 2. The thread pool executes the operations concur-
rently, scheduling them to pipeline data processing and data
movement steps. The data pool allocates memory buffers in
an efficient way, reducing the amount of buffer creations [6].
Once the buffers are filled with data, they are stored into
in-memory data structures to be processed by subsequent
operations.

Performance is further improved by minimizing the connec-
tions needed to read and write textual data to HDFS, working
with full input splits in memory. Moreover, primitive data
types of Hadoop are modified to avoid the use of redundant
memory copies, using instead references to the serialized data
to optimize pair copies and comparisons. The Hadoop data
engine is also accelerated by using efficient sort and merge al-
gorithms. Flame-MR has been assessed by means of synthetic
benchmarks, showing significant performance improvement
over Hadoop and other Hadoop-based alternatives [5] and also
providing competitive results compared to Spark [6].
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Figure 2: Flame-MR Worker architecture

III. RELATED WORK

Many papers in the literature have compared the perfor-
mance of the MapReduce model when using different data
processing engines (e.g., NativeTask [8]), file systems (e.g.
MARIANE [9]), and network interconnects (e.g. RDMA-
Hadoop [10]). These works generally evaluate their proposals
by executing popular Big Data benchmarks like TeraSort or
K-Means. However, the lack of performance results with real-
world applications makes it difficult to determine the actual
performance benefit that a user can obtain when replacing
Hadoop with any of the optimized alternatives.

Regarding large-scale applications employed in real use
cases, their optimization is often performed by translating
their source code to a more efficient computing paradigm.
For example, Kira [11] is a distributed astronomy image
processing toolkit on top of Spark. It can obtain a 3.7× speedup
on the Amazon EC2 cloud over an equivalent parallel im-
plementation written in C and running on the GlusterFS file
system. A similar approach has been employed in [12] to adapt
high energy physics workflows to Spark, obtaining improved
usability and performance when compared to other existing
sequential implementations like ROOT [13]. Although these
works prove to accelerate the execution of real-world appli-
cations, a considerable effort is required to translate existing
applications and libraries to a new computing paradigm.

Some other works use these applications to determine
the performance benefits of framework optimizations. For
example, the Kira toolkit is used in [14] to evaluate RDMA-
Spark [15], which improves the results of standard Spark
with a 1.21× speedup. In the case of Hadoop, the authors
of OEHadoop [16] evaluate their proposal by simulating a
Facebook job trace extracted from the SWIM project [17].
OEHadoop, which offloads data replication to a low-level
optical multicast system, obtains better performance than the
original Hadoop, although the results provided are extracted
from simulations and not from empirical data.

One of the most important requirements that framework
optimizations must meet is portability, as the same MapRe-
duce application is likely to be executed in many different
systems. This makes Flame-MR a good candidate to improve
performance by leveraging memory resources, as it has been

specifically designed to accelerate applications in a portable
way. Other frameworks that employ in-memory optimizations
are NativeTask [8] and M3R [18]. On the one hand, NativeTask
is based on a native C++ implementation that replaces the task
management of map and reduce functions, while also optimi-
zing the cache awareness of the merge-sort mechanism [19].
As these optimizations are highly dependent on the underlying
system, they do not keep portability. On the other hand, M3R
is an in-memory framework based on the X10 programming
language [20]. Although it accelerates Hadoop workloads by
reducing the shuffling overhead and caching intermediate data,
it is restricted to Hadoop jobs that can fit in memory. These
characteristics prevent the utilization of M3R for real-world
Big Data use cases.

As commented in the previous section, the performance
benefits of Flame-MR when executing synthetic benchmarks
have already been assessed. However, the artificial nature of
this kind of workloads makes it difficult to extrapolate these
results to practical use cases. This paper provides an in-depth
performance analysis of three real-world Hadoop applications,
describing the characteristics and challenges of each workload.
The main objective is to determine the performance benefits
that Flame-MR is able to provide in practice without needing
to change the underlying computing paradigm.

IV. VELASSCO: DATA VISUALIZATION QUERIES

This section addresses the optimization of VELaSSCo [21],
a Big Data visualization architecture that relies on the MapRe-
duce model to extract information from simulation datasets.
More details of this project are provided in Section IV-A,
while the main characteristics of the MapReduce workloads
are described in Section IV-B. Section IV-C explains the main
challenges of running these workloads with Flame-MR to
improve their performance. The experimental configuration
and performance results are then presented in Sections IV-D
and IV-E, respectively. Finally, some concluding remarks are
provided in Section IV-F.

A. Overview

VELaSSCo is a query-based visualization framework that
aims at providing users with a tool to manipulate and visualize
large simulation datasets. These datasets are generated by
large parallel simulations relying on Finite Element Methods
(FEM) or Discrete Element Methods (DEM). For both me-
thods the simulation updates the properties of the nodes
(FEM) or particles (DEM) at each time step. The user runs
a 3D visualization client to request the execution of specific
visualization algorithms on given parts of the data. The query
is sent to the VELaSSCo cluster and translated into a Hadoop
job that queries the input data and performs the expected
transformation. The result is sent back to the client for the
final 3D rendering and display. The VELaSSCo architecture
can be decomposed into three subsystems: client, analytics and
storage, described next.

The client subsystem provides data visualization to the user,
generating a new query when the user performs an action. Each
query has a certain type depending on the action performed
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by the user. Analytical queries are the ones that require to
extract some information from the dataset by means of a
MapReduce workload (e.g. calculating the bounding box of a
model). The analytics subsystem is in charge of receiving these
queries and determining the computation needed to complete
each one. That computation is performed by a MapReduce
workload on a Hadoop cluster. The workloads employed in
VELaSSCo consist of a single MapReduce job that typically
operates over a subset of the dataset (a few simulation time
steps for instance). Finally, the data persistence is performed
by the storage subsystem. This subsystem employs HDFS to
distribute the data among the computing nodes of the cluster. It
also relies on HBase [22], a database system on top of HDFS,
to allow the extraction of parts of the dataset without reading
it entirely. This optimizes the amount of I/O operations needed
to perform the computations. Instead of searching the relevant
data through the entire dataset, the MapReduce workload uses
the key-value format provided by HBase to fetch the required
elements. The indexed system used in HBase accelerates the
retrieving operation by avoiding the reading of unnecessary
data.

As VELaSSCo is a real-time visualization platform, the
performance of the actions executed by the user is crucial
to ensure an appropriate user experience. However, Hadoop
is not able to achieve this goal when dealing with large-
scale datasets. This use case focuses on the acceleration of
the queries used in the analytics subsystem of VELaSSCo by
using Flame-MR.

B. MapReduce implementation

We list below the main analytical queries included in
VELaSSCo:

• GetBoundingBoxOfAModel (BB): Computes the spatial
bounding box for the selected dataset, i.e the min and
max coordinate of the enclosed elements in the x, y and z
dimensions.

• GetBoundaryOfAMesh (BM): Computes the set of ele-
ments that are at the boundary of the selected mesh, i.e.
the surface given by the triangles belonging to only one
mesh cell.

• GetListOfVerticesFromMesh (LVM): Obtains a list of
identifiers (IDs) of the elements contained in a mesh.

• GetMissingIDsOfVerticesWithoutResults (MIV): Obtains
the IDs of those mesh elements that do not contain any
simulation result.

• GetSimplifiedMesh (SM): Obtains a simplified version
of the mesh model, reducing the total dataset size by
combining nearby elements.

As mentioned in the previous section, these queries are
performed by MapReduce workloads that are composed of a
single job. All jobs extract the input data from HBase, selecting
the relevant elements according to the information provided by
the user. To read the data, the MapReduce implementation is
based on a custom input formatter provided by HBase, which
is used by the mappers to iterate over the entries allocated to
them. Once the output of the job is calculated, it is converted

to text files and stored in HDFS in order to be accessible by
the client subsystem.

The implementation of each query includes the definition of
the map and reduce functions. These functions use custom data
types defined in VELaSSCo, which implement the Writable
interface required for data serialization. So, map and reduce
functions are configured to use these data types when reading
and writing data.

C. Challenges

The use of Flame-MR to optimize the VELaSSCo queries
must take into account the characteristics that differ from
standard Hadoop jobs. In particular, reading input data from
HBase and using custom data types must be handled correctly
to avoid incompatibility problems. This section describes how
they are supported in Flame-MR.

Flame-MR is oriented to processing large textual datasets
stored in HDFS, which is a common use case in MapReduce
applications. Therefore, the reading of input data has been
designed to make the common case fast. When launching a
map operation, Flame-MR connects to HDFS and reads a full
input split (e.g. 256 MB) to memory by copying the data to a
set of medium-sized buffers (e.g. 1 MB) allocated in the data
pool (see Figure 2). Once the input split is read, the connection
to HDFS is closed and the data buffers are parsed in memory
to obtain the input pairs and feed the mappers.

The in-memory parsing mechanism of Flame-MR is only
possible when the input dataset is stored in HDFS in textual
format. For other formats, the data source is unknown, and
the software interface defined by Hadoop only allows reading
the input pairs one by one. Therefore, copying an input
split entirely to memory is not allowed and the reading of
input data needs to be addressed differently. That is the case
of VELaSSCo, which reads the data from HBase. When a
map operation is launched in Flame-MR, the input formatter
connects to the HBase server to read the data contained in
the input split. Then, the map operation uses the interfaces
provided by the input formatter class to read the input pairs,
passing them to the user-defined map function. By doing this,
the correct functioning of the queries is ensured. Note that this
behavior can be extrapolated to any formatter class.

The use of custom data objects in VELaSSCo has also
implications for Flame-MR. This happens because Flame-MR
modifies the behavior of primitive Hadoop data types, like
text and numerical types, in order to optimize read and write
operations. These modifications include the use of in-memory
addressing of serialized data to avoid the creation of data
objects in sort and copy operations. When a key-value pair
is stored in a buffer, a header is added to indicate the pair and
key lengths, which will be used to read data without creating
the objects. Therefore, the implementation of primitive data
types in Flame-MR is extended with additional methods to
obtain the length of data objects before writing them to the
buffer. As VELaSSCo implements specific data objects inside
each query, Flame-MR must adapt its behavior to comply with
the standard Writable interface defined by Hadoop, which does
not provide any information about the length of the objects.
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(a) Primitive types (b) Writable objects

Figure 3: Data object serialization in Flame-MR

Table I: Node characteristics of Grid’5000

Hardware configuration Software configuration

CPU model 2 × Intel Xeon E5-2630 v3 (Haswell) OS version Debian Jessie 8.5
CPU speed (Turbo) 2.40 GHz (3.20 GHz) Kernel 3.16.0-4
Cores 16 Java Oracle JDK 1.8.0 121
Memory 128 GB DDR4 2133 MHz
Disk 2 × 558 GB HDD
Network 4 × 10 Gbps Ethernet

The serialization mechanism of Hadoop primitive data types
in Flame-MR is shown in Figure 3a. The pair and key length
are calculated before writing the key-value pair to the buffer.
To obtain the same results with custom Writable objects,
Flame-MR performs the mechanism shown in Figure 3b. Pair
and key lengths are unknown beforehand, so their positions
must be skipped, writing the key-value pair after them. Once
the data has been written, the lengths are calculated according
to the writing position after copying the key-value pair. The
lengths are then written by going backwards on the data buffer
to the original position. This mechanism ensures compatibility
with all types of Writable objects, while maintaining the in-
memory optimizations of Flame-MR.

D. Experimental configuration

This section describes the experimental testbed used in the
comparison between Hadoop and Flame-MR when executing
the VELaSSCo queries. The experiments have been conducted
in the Grid’5000 infrastructure [23]. Two cluster sizes (n)
have been used: 17 and 25 nodes with 1 master and n-1
slaves. These nodes are equipped with 2 Intel Haswell-based
processors with 8 physical cores each (i.e. 16 cores per node),
128 GB of memory and 2 local disks of 558 GB each (see
Table I for more details).

The experiments have used HBase 1.2.4, Hadoop 2.7.3 and
Flame-MR 1.1 (available at http://flamemr.des.udc.es). The
configuration of the frameworks has been carefully set up by
following their user guides, taking into account the character-
istics of the systems (e.g. number of CPU cores, memory size).
The most important parameters of the resulting configuration
are shown in Table II, including a brief explanation of each
one.

The VELaSSCo queries used in the evaluation are the ones
described in Section IV-B. The input dataset has been extracted

from a FEM simulation that represents the wind flow in the
city of Barcelona with an eight-meter resolution. This dataset
has 12,089,137 vertices and occupies 367 GB. For each query,
the graphs show the median elapsed time of 10 executions,
although the standard deviations observed were not significant.

E. Performance results

Figures 4a and 4b show the execution times of the VE-
LaSSCo queries using 17 and 25 nodes, respectively. Flame-
MR widely outperforms Hadoop with both cluster sizes,
showing an average reduction in execution time of 87% with
17 nodes and 88% with 25 nodes. This reduction is due
to the more efficient architecture of Flame-MR, which can
better leverage the memory and CPU resources of the system.
Note that each Worker process in Flame-MR can schedule
multiple map and reduce operations, allocating them to the
cores available as they become idle. Therefore, the Worker can
use the same HBase connection for all map operations. Instead,
Hadoop allocates a single Java process to each map and reduce
task, and so it creates an HBase connection for each one,
increasing the overhead. This enables Flame-MR to process
more HBase requests per unit time compared to Hadoop,
which is reflected in the information counters provided by
HBase.

F. Remarks

This section addressed the optimization of analytical queries
that process datasets stored in HBase. These queries implement
custom input formats and data types by using the class
interfaces provided by Hadoop. Flame-MR is able to adapt
to these characteristics without hindering the optimizations
implemented in its underlying in-memory architecture. Using
Flame-MR, the performance of the queries is improved by

http://flamemr.des.udc.es
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Table II: Configuration of the frameworks in Grid’5000

Hadoop MapReduce

Mapper/Reducer heap size 7.25 GB Maximum heap size for Mapper/Reducer processes
Mappers per node 8 Maximum number of map tasks per node
Reducers per node 8 Maximum number of reduce tasks per node
Shuffle parallel copies 20 Parallel transfers per Reducer during shuffle phase
IO sort MB 1600 MB Total amount of memory to use while sorting files
IO sort spill percent 80% Memory threshold to spill memory data to disk

Flame-MR

Worker heap size 44 GB Maximum heap size for Worker processes
Workers per node 2 Number of Worker processes per node
Cores per Worker 8 Number of CPU cores per Worker
Data pool size 30.8 GB Total amount of memory to store data buffers
Data buffer size 1 MB Amount of memory allocated to each data buffer

HDFS

HDFS block size 256 MB Logical block size for distributed files
Replication factor 3 Number of distributed copies per block
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Figure 4: Execution times of VELaSSCo queries with Hadoop and Flame-MR

almost one order of magnitude, enhancing the user experience
of VELaSSCo.

V. CLOUDRS: ERROR REMOVAL IN GENOMIC DATA

This section addresses the optimization of CloudRS [24],
a bioinformatics tool that detects and corrects errors in large
genomic datasets, following the same structure as Section IV.

A. Overview

The datasets generated by Next Generation Sequencing
(NGS) platforms are composed of a large number of DNA
sequence fragments, which are small pieces of genomic in-
formation contained in a string of characters (called reads).
Each character of a read represents a DNA base, namely
Adenine (A), Cytosine (C), Guanine (G), and Thymine (T).
The analysis of these datasets is performed by processing the
sequences and identifying relationships between them.

During the generation of genomic datasets, NGS sequencers
often introduce errors by placing incorrect bases in the reads.
This can affect the quality of the results obtained by down-
stream analysis, and so it is usually minimized by introducing
an error correction phase in the preprocessing stage of the NGS
pipeline. In fact, this is a critical step in NGS workflows like
de novo genome assembly or DNA resequencing. CloudRS is
a popular tool for performing this preprocessing task, being
based on the ReadStack (RS) algorithm [25]. This algorithm
makes use of the characteristics of NGS datasets to identify
common patterns in the sequences and correct the mismatching
ones.

The DNA sequences that compose a dataset are not necessa-
rily disjoint, as they can share information due to the overlap
of reads performed by the sequencer. CloudRS takes advantage
of this characteristic to identify redundant information in the
sequences and correct errors in the bases. First, it splits each
sequence into several subsequences. Second, it compares the
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different candidates for each subsequence, choosing the one
that appears most of the times.

CloudRS is implemented with the MapReduce model by
operating over datasets stored in HDFS. As it is a common
step in large NGS workflows, its performance is crucial to
obtain the results of the analysis in a reasonable time. For that
reason, it has been chosen to be optimized with Flame-MR.
Further details about its implementation are provided in the
next section.

B. MapReduce implementation

CloudRS is an iterative workload that follows several phases
to process the input dataset, explained below:

1) LoadReads: This phase prepares the input dataset to be
processed, discarding noisy information and converting
the sequences into a more suitable format for Hadoop.
In order to avoid the comparison of very repetitive
sequences, it also builds a list of the most frequent
subsequences. Later, this list is used to filter them out
and avoid workload imbalance.

2) PreCorrection: Each sequence is split into different sub-
sequences that are candidates in the next phases. The
candidates for each subsequence are aligned to allow
their comparison, using a wildcard pattern.

3) ErrorCorrection: The set of subsequence candidates is
iterated through by using the information obtained in the
previous phases. First, the most frequent subsequences
are filtered out. Then, the candidates are compared by
emitting a vote for each position. When all the votes
have been emitted, the correct alternative is chosen by
majority. This calculation repeats several times until the
obtained subsequences remain invariant.

4) Screening: Once the correct subsequences have been
calculated, the input dataset is reprocessed to fix the er-
rors, replacing each subsequence with its corresponding
correct alternative.

5) Conversion: The output dataset is converted to a standard
format in order to be processed by subsequent NGS
applications (e.g. sequence alignment).

Using these five phases, the execution of CloudRS involves
a total of 11 MapReduce jobs, some of them being repeated
during the ErrorCorrection phase. Their implementation uses
an old version of the Hadoop API, although this only affects
the interfaces used by the source code of the workload.
CloudRS also takes advantage of the DistributedCache fea-
ture provided by Hadoop to make the list of most frequent
sequences available to the mappers during the ErrorCorrection
phase.

The input and output formatter classes in CloudRS are
standard ones that operate over textual data stored in HDFS.
Instead of using a custom formatter, CloudRS formats the data
within the user-defined map and reduce functions. CloudRS
uses standard Hadoop Text objects to represent the data
as strings, separating the different fields by using special
characters. Note that this is a very inefficient implementation
compared to the use of a custom formatter that can represent
in-memory data as binary objects. The approach of CloudRS

requires to parse data objects from textual data, while also
having to convert them to strings when writing the output.

C. Challenges

As explained in the previous section, CloudRS is an iterative
workload that executes several MapReduce jobs to obtain the
final result. The resource management of Flame-MR adapts
better to this kind of computation than Hadoop, thus providing
better performance. On the one hand, Hadoop allocates one
Java process per map/reduce task. Therefore, Hadoop needs
to create many map and reduce processes at the start of each
job, stopping them when the job is finished. On the other hand,
Flame-MR deploys a single Java process per Worker and uses
a thread pool to execute the map and reduce functions (see
Figure 2). These processes are reutilized between MapReduce
jobs until the entire workload is finished. Note that Flame-MR
also benefits from the reutilization of internal data structures
like the allocation of memory buffers.

Regarding data input and output, Flame-MR is oriented
to the processing of large textual datasets, as mentioned in
Section IV-C. Therefore, it uses optimized input and output
formatters that minimize the amount of connections to HDFS.
Similarly, the implementation of textual data objects used in
Flame-MR reduces the amount of memory copies and object
creations when performing sort and copy operations. CloudRS
makes use of both characteristics, and so it is especially
well suited to be optimized with Flame-MR. However, the
inefficient data formatting explained in the previous section is
intrinsic to CloudRS, as it is performed inside the map/reduce
functions. The goal of Flame-MR is to improve applications’
performance without modifying their source code, and so
we cannot modify those user-defined functions. Therefore,
the inefficiency of the data formatting will also be present
in Flame-MR, although it is alleviated by using its efficient
implementation of textual data objects.

The use of the old Hadoop API is also supported in Flame-
MR by connecting old classes and methods with its corres-
ponding counterparts in the new API. Furthermore, Flame-MR
supports the use of the DistributedCache by copying the data
files required by the mappers to the computing nodes where
they are being executed, thus making the data available to the
application.

D. Experimental configuration

This section describes the experimental configuration used
to evaluate CloudRS with Hadoop and Flame-MR. As genomic
applications are executed in many kinds of systems, the
evaluation has considered two different scenarios: a private
cluster with 9 nodes, Pluton, and a public cloud platform,
Microsoft Azure [26], using 17 and 25 instances. As in the
case of VELaSSCo, each cluster size n corresponds to 1 master
and n-1 slaves.

The hardware and software characteristics of Pluton and
Azure are shown in Tables III and IV, respectively. Pluton
nodes are equipped with 16 cores each, 64 GB of memory and
one local disk of 1 TB, being interconnected via InfiniBand
FDR and Gigabit Ethernet (GbE). The experiments in Azure
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Table III: Node characteristics of Pluton

Hardware configuration Software configuration

CPU model 2 × Intel Xeon E5-2660 (Sandy Bridge) OS version CentOS release 6.8
CPU speed (Turbo) 2.20 GHz (3 GHz) Kernel 2.6.32-642
Cores 16 Java Oracle JDK 1.8.0 45
Memory 64 GB DDR3 1600 MHz
Disk 1 TB HDD
Network InfiniBand FDR & GbE

Table IV: Node characteristics of L16S instances in Azure

Hardware configuration Software configuration

CPU model Intel Xeon E5-2698B v3 (Haswell) OS version CentOS release 7.4
CPU speed 2 GHz Kernel 3.10.0-514
Virtual cores 16 Java OpenJDK 1.8.0 151
Memory 128 GB
Disk 2.7 TB SSD
Network 4 × 10 Gbps Ethernet

Table V: Configuration of the frameworks in Pluton

Hadoop MapReduce Flame-MR HDFS

Mapper/Reducer heap size 3.4 GB Worker heap size 11.8 GB HDFS block size 256 MB
Mappers per node 8 Workers per node 4 Replication factor 3
Reducers per node 8 Cores per Worker 4
Shuffle parallel copies 20 Data pool size 8.3 GB
IO sort MB 841 MB Data buffer size 512 KB
IO sort spill percent 80%

Table VI: Configuration of the frameworks in Azure

Hadoop MapReduce Flame-MR HDFS

Mapper/Reducer heap size 6.7 GB Worker heap size 24 GB HDFS block size 128 MB
Mappers per node 8 Workers per node 4 Replication factor 3
Reducers per node 8 Cores per Worker 4
Shuffle parallel copies 20 Data pool size 16.8 GB
IO sort MB 1704 MB Data buffer size 512 KB
IO sort spill percent 80%

have been carried out using L16S virtual instances located
in the West Europe region. These instances have 16 virtual
cores per node, 128 GB of memory and a virtual SSD disk of
2.7 TB.

The experiments have used Hadoop 2.7.4 and Flame-
MR 1.1. The configuration has been adapted to the charac-
teristics of the systems, resulting in the parameters shown in
Tables V and VI for Pluton and Azure, respectively. These
parameters have been described in Table II. Furthermore, the
frameworks have used the IP over InfiniBand (IPoIB) interface
available in Pluton, which allows taking advantage of the In-
finiBand network via the IP protocol. Finally, some parameters
such as the HDFS block size have been experimentally tuned
to obtain the best performance on each system.

The input dataset used in the experiments is SRR921890,
which has been obtained from the DDBJ Sequence Read

Archive (DRA) [27]. It is composed of 16 million sequences
of 100 bases each (5.2 GB in total). The results shown in
the following section correspond to the median elapsed time
of 10 executions. The standard deviations observed were not
significant.

In this use case, the experiments have been conducted by
using the Big Data Evaluator (BDEv) tool [28] (version 3.1,
available at http://bdev.des.udc.es). This tool allows automat-
ing the configuration and deployment of the frameworks and
the execution of the workloads.

E. Performance results

Figure 5 shows the performance results of CloudRS. As
can be seen, Flame-MR clearly outperforms Hadoop in both
testbeds. In fact, Flame-MR obtains a 78% reduction in execu-
tion time in Pluton. In the case of Azure, it obtains a reduction

http://bdev.des.udc.es
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Figure 5: Execution times of CloudRS with Hadoop and
Flame-MR

of approximately 40% for both cluster sizes. Note that Hadoop
presents a huge performance improvement when scaling from
Pluton with 9 nodes to Azure with 17 nodes. In addition to
the double amount of slave nodes, this improvement is due to
the better node characteristics of Azure. Compared to Pluton,
Azure provides a more recent CPU microarchitecture and
doubles the available memory, while the SSD disk decreases
I/O waiting times. Furthermore, the execution time of Flame-
MR with 9 nodes in Pluton is almost the same as using
Hadoop in Azure with 17 nodes. Therefore, Flame-MR allows
reducing the execution time of CloudRS without needing to
increase the computational resources, obtaining a performance
improvement equivalent to using a double-sized cluster in
this specific case, minimizing incurred costs in public cloud
platforms such as Azure.

F. Remarks

The use of Flame-MR to optimize CloudRS has shown an
important reduction in execution time. Taking into account
that the data formatting inefficiency of the source code of
CloudRS cannot be avoided, this use case is a good example
of how Flame-MR can reduce the performance impact of those
inefficiencies, without redesigning the software or employing
further computing resources.

VI. MARDRE: DUPLICATE READ REMOVAL IN GENOME
SEQUENCING DATA

This section addresses the optimization of MarDRe [29],
a bioinformatics application that removes duplicate reads in
large genomic datasets, following the same structure as Sec-
tions IV and V.

A. Overview

As explained in Section V-A, genomic datasets generated
by NGS sequencers contain redundant information due to the
existence of overlapped reads. This characteristic causes the
appearance of duplicate or near-duplicate sequences in large
datasets, which neither provide new information nor improve
the results of analytical processes. However, processing them

consumes system resources and wastes execution time. There-
fore, they are often removed to decrease the overall runtime
of the downstream analysis.

MarDRe is a MapReduce application that is used to detect
and remove duplicate sequences in genomic datasets stored
in HDFS. It is based on a prefix-clustering mechanism that
groups the sequences by similarity. Then, the sequences within
a group are compared by using an optimized algorithm that
discards the sequences that do not provide new information.

As in the case of CloudRS, MarDRe is usually performed
in the preprocessing stage. Therefore, reducing its execution
time can have a significant impact on the performance of the
overall NGS pipeline. Further details of its implementation are
provided in the next section.

B. MapReduce implementation

The MapReduce workload used in MarDRe performs a
single Hadoop job to process the data stored in HDFS. In
contrast to CloudRS, MarDRe supports input datasets stored
in FASTQ/FASTA, which are standard formats commonly
employed in genomic datasets.

The map phase is used to cluster the DNA sequences into
groups. Each mapper reads the data belonging to its input
split by using a custom formatter that reads the sequences in
FASTQ/FASTA format. The input sequences are then divided
into prefix and suffix to group the ones that share the same
prefix. During the shuffle phase, the prefix is used as key
to partition and sort the map output pairs. The value of the
pair contains the sequence information by using a custom
data type defined in MarDRe. Next, the map output pairs are
sent to the reducer nodes where they are processed. Once
the reducers receive all the assigned sequences, they carry
out the comparison to filter out the duplicates by using the
optimized algorithm presented in [30]. This algorithm does
not compare all the sequences within each group, but uses
the first one as a reference for the rest. If the number of
mismatches of a sequence with respect to the first one is
higher than a user-defined threshold, the sequence is discarded.
Moreover, the bases of the sequences are not compared one
by one. Instead, a 4-bit encoding is used to represent the
bases, determining the differences by using a bit-wise XOR
operation. After that, the output of the reducers containing the
remaining sequences without duplicates is written to HDFS in
FASTQ/FASTA format.

MarDRe is especially well suited to the MapReduce model,
as the main part of its clustering algorithm is performed by the
underlying grouping-by-key mechanism of Hadoop. Further-
more, its implementation leverages the use of custom format-
ters and data objects to avoid inefficient parsing of the input
dataset. Although MarDRe shows good performance with
balanced workloads, real-world datasets are highly skewed,
with lots of sequences that share a common prefix. This
situation introduces important load balancing problems in the
reduce phase due to the comparison of large sets of sequences.
This causes some reducers to have excessive execution times.
As a MapReduce job has to wait for all reducers to finish,
the load balancing problem in the reduce phase affects the
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Figure 6: Load balancing mode in Flame-MR

overall performance. The next section discusses how Flame-
MR solves this problem in a transparent way.

C. Challenges

Flame-MR must adapt to the characteristics of MarDRe
when optimizing its performance. As in the VELaSSCo
use case, the use of custom formatters and data objects in
MarDRe requires the utilization of the standard API provided
by Hadoop, while keeping the in-memory optimizations, as
explained in Section IV-C.

Regarding the load balancing problem explained before, the
standard behavior of Flame-MR emulates the way Hadoop
processes the data without modifying the operation of the
map and reduce functions. Therefore, load imbalance also
affects Flame-MR. To alleviate it without changing the source
code of the application, a new load balancing mode has been
developed in Flame-MR version 1.1. During the reduce phase,
large partitions are detected and split into several chunks. In
doing so, the computation is parallelized and the execution
time of heavy-loaded reducers is decreased.

Figure 6 illustrates the operation of the load balancing
mode. Instead of processing a large partition with a single
reduce operation, the data is split into different chunks with a
maximum size calculated upon the number of chunks defined
by the user. Next, each chunk is reduced in parallel, writing
the output to HDFS. Note that this mechanism is likely
to introduce changes in the output results of the reduce
phase, as the input pairs are passed to the reduce function in
different groups. Therefore, the load balancing mode is only
applicable to those Hadoop jobs that can support modifications
in the reduce partitioning without affecting the logic of the
application, even if the final output suffers slight variations.
In the particular case of MarDRe, the splitting of partitions
leads to different comparisons to be done between sequences.
Although this may modify the actual sequences that are filtered
in the end, it does not affect the purpose of the workload as
long as the percentage of sequences filtered does not vary
significantly. For example, in the experimental results shown
in Section VI-E, the amount of duplicate reads filtered did not
vary more than 0.02% when using the load balancing mode.

This mode can be activated by the user via configuration,
using a single parameter to indicate the number of chunks in
which partitions should be split. By default, this value is set
to the number of cores per Worker.
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Figure 7: Execution times of MarDRe with Hadoop, Flame-
MR and Flame-MR-LB

D. Experimental configuration

MarDRe and CloudRS are both executed as preprocessing
steps of an NGS analysis on Big Data infrastructures. There-
fore, the evaluation of MarDRe has employed the same ex-
perimental configuration as CloudRS using Pluton and Azure
as testbeds (see Tables III-VI in Section V-D), and the BDEv
tool to conduct the evaluation. However, the computational
requirements of CloudRS are significantly higher than those
of MarDRe, and so a larger dataset was used in these experi-
ments: SRR377645. This dataset is composed of 214 million
reads of 100 bases each (67 GB).

The evaluation includes the results of Hadoop, Flame-
MR and Flame-MR with the load balancing mode activated
(labeled as Flame-MR-LB in the graphs). In the experiments,
the number of chunks of the load balancing mode has been
tuned for improved performance, splitting each partition in
13 and 9 chunks for Pluton and Azure, respectively.

E. Performance results

Figure 7 shows the execution times of MarDRe with
Hadoop, Flame-MR and Flame-MR-LB. As can be seen,
Flame-MR outperforms Hadoop by 43% in Pluton and by
approximately 24% in Azure for both cluster sizes. The im-
provement provided by Flame-MR-LB is even better, reducing
the execution time of Hadoop by 66% both in Pluton and
Azure (17 nodes), and by 77% when using 25 nodes in Azure.
This huge improvement demonstrates the effectiveness of the
load balancing mode explained in Section VI-C, together with
the efficient in-memory architecture of Flame-MR.

Note that the execution times of Hadoop and Flame-MR in
Azure using 25 nodes are higher than with 17 nodes, which
is due to the load balancing problem. With more nodes and
thus more reducers, the load per reducer is decreased, but
the reducers that process the largest partitions require the
same time. This issue, together with the additional overhead
of managing more nodes, hinders the performance of both
frameworks. However, Flame-MR-LB does not present this
problem, obtaining slightly better results with 25 nodes than
with 17.
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Table VII: Load balancing in MarDRe

(a) Pluton (9 nodes)

Fastest reducer Median reducer Slowest reducer Execution time

Hadoop 25.7 s 136 s 972.2 s 1168.3 s
Flame-MR 14.9 s 19.7 s 435.7 s 662.5 s
Flame-MR-LB 0.004 s 1.1 s 184.2 s 394.7 s

(b) Azure (17 nodes)

Fastest reducer Median reducer Slowest reducer Execution time

Hadoop 12.7 s 22.1 s 259.4 s 316.4 s
Flame-MR 11.8 s 15.8 s 203.1 s 243.9 s
Flame-MR-LB 0.001 s 1.1 s 60.5 s 106.3 s

(c) Azure (25 nodes)

Fastest reducer Median reducer Slowest reducer Execution time

Hadoop 8.9 s 13.8 s 346.3 s 398.7 s
Flame-MR 6 s 8.2 s 254.9 s 299.5 s
Flame-MR-LB 0.001 s 0.8 s 29.1 s 88.1 s

In order to provide more information about the load ba-
lancing problem of MarDRe, Table VII shows the processing
time of the fastest, median and slowest reducer compared to
the overall execution time. As can be seen, the time consumed
by the slowest reducer is clearly correlated with the overall
execution time of the application. Furthermore, there exist
huge differences between the fastest and slowest reducers. In
the case of Hadoop and Flame-MR, the use of more nodes
in Azure decreases the processing time of the fastest and
median reducers. This does not always happen with the slowest
reducer, which consumes more time with 25 nodes than with
17 for both frameworks. This fact causes the overall execution
time to be higher. Flame-MR-LB shows a different behavior.
When using 25 nodes, the fastest and median reducers remain
almost invariant, while the slowest one consumes less time.
This, in turn, reduces the overall execution time of Flame-
MR-LB.

F. Remarks

This section has shown the benefits of optimizing MarDRe
with Flame-MR. Without modifying its source code, it obtains
significant performance improvements by better leveraging
the system resources. Furthermore, the new load balancing
mode available in Flame-MR has demonstrated its usefulness
to reduce the impact of skewed loads in the reduce phase,
reducing up to 77% the execution time of Hadoop.

VII. CONCLUSION

The MapReduce computing model and Hadoop are com-
monly used by many applications to extract valuable in-
formation from datasets stored in HDFS. Although other
alternatives such as Spark can provide improved performance
over Hadoop, the effort of adapting existing MapReduce
applications to new APIs can be significant (provided that the
source code is available). Flame-MR solves this problem by

providing huge performance improvements in a transparent
way without needing to change the applications.

This paper has shown three different real-world use cases
from two application domains: visualization queries (VE-
LaSSCo) and preprocessing of genomic datasets (CloudRS and
MarDRe). On the one hand, Flame-MR improves the execution
time of the analytical queries of VELaSSCo by adapting
its behavior to the custom input formats and data objects
defined in the workload. On the other hand, the iterative
algorithm performed by CloudRS is significantly accelerated,
overcoming some of the inefficiencies of its underlying imple-
mentation. Finally, the use of Flame-MR in MarDRe has not
only optimized the underlying Hadoop data engine but also
alleviated its load balancing problems.

The execution of several use cases with distinct charac-
teristics, together with the assessment of real-world datasets
on different systems, have proved the significant performance
benefits provided by Flame-MR over Hadoop.

ACKNOWLEDGMENT

This work was supported by the Ministry of Economy,
Industry and Competitiveness of Spain (Project TIN2016-
75845-P, AEI/FEDER/EU) and by the FPU Program of the
Ministry of Education (grant FPU14/02805). The Grid’5000
testbed used in this paper is supported by Inria, CNRS,
RENATER and several French Universities. The authors would
like to thank Iván Cores for his contribution to the deployment
of VELaSSCo, and also Pierre Neyron and Michael Mercier
for their help in the use of the Grid’5000 platform. Also thanks
to Microsoft Research for awarding this work with a sponsored
Azure account (ref. MS-AZR-0036P).

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.



IEEE ACCESS 12

[2] Apache Hadoop, http : / /hadoop.apache .org/, [Last visited: Novem-
ber 2018].

[3] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache Spark: a unified engine
for Big Data processing,” Communications of the ACM, vol. 59, no. 11,
pp. 56–65, 2016.

[4] K. Siddique, Z. Akhtar, E. J. Yoon, Y.-S. Jeong, D. Dasgupta, and
Y. Kim, “Apache Hama: an emerging bulk synchronous parallel com-
puting framework for Big Data applications,” IEEE Access, vol. 4, pp.
8879–8887, 2016.

[5] J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño, “Flame-
MR: an event-driven architecture for MapReduce applications,” Future
Generation Computer Systems, vol. 65, pp. 46–56, 2016.

[6] ——, “Enhancing in-memory efficiency for MapReduce-based data
processing,” Journal of Parallel and Distributed Computing, vol. 120,
pp. 323–338, 2018.

[7] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST’2010), Incline Village, NV, USA,
2010, pp. 1–10.

[8] D. Yang, X. Zhong, D. Yan, F. Dai, X. Yin, C. Lian, Z. Zhu, W. Jiang,
and G. Wu, “NativeTask: a Hadoop compatible framework for high
performance,” in 2013 IEEE International Conference on Big Data
(IEEE BigData 2013), Santa Clara, CA, USA, 2013, pp. 94–101.

[9] Z. Fadika, E. Dede, M. Govindaraju, and L. Ramakrishnan, “MARIANE:
using MapReduce in HPC environments,” Future Generation Computer
Systems, vol. 36, pp. 379–388, 2014.

[10] M. Wasi-Ur-Rahman, N. S. Islam, X. Lu, J. Jose, H. Subramoni,
H. Wang, and D. K. Panda, “High-performance RDMA-based design
of Hadoop MapReduce over InfiniBand,” in 27th IEEE International
Parallel and Distributed Processing Symposium Workshops and PhD
Forum (IPDPSW’13), Boston, MA, USA, 2013, pp. 1908–1917.

[11] Z. Zhang, K. Barbary, F. A. Nothaft, E. R. Sparks, O. Zahn,
M. J. Franklin, D. A. Patterson, and S. Perlmutter, “Kira: processing
astronomy imagery using Big Data technology,” IEEE Transactions on
Big Data, 2016, (In press). [Online]. Available: https://doi.org/10.1109/
TBDATA.2016.2599926

[12] O. Gutsche, M. Cremonesi, P. Elmer, B. Jayatilaka, J. Kowalkowski,
J. Pivarski, S. Sehrish, C. M. Surez, A. Svyatkovskiy, and N. Tran,
“Big Data in HEP: a comprehensive use case study,” Journal of Physics:
Conference Series, vol. 898, no. 7, p. 072012, 2017.

[13] R. Brun and F. Rademakers, “ROOT – an object oriented data analysis
framework,” Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, vol. 389, no. 1-2, pp. 81–86, 1997.

[14] M. Tatineni, X. Lu, D. Choi, A. Majumdar, and D. K. Panda, “Expe-
riences and benefits of running RDMA-Hadoop and Spark on SDSC
Comet,” in 5th Annual Conference on Diversity, Big Data, and Science
at Scale (XSEDE’16), Miami, FL, USA, 2016, pp. 23:1–23:5.

[15] X. Lu, D. Shankar, S. Gugnani, and D. K. Panda, “High-performance
design of Apache Spark with RDMA and its benefits on various
workloads,” in 2016 IEEE International Conference on Big Data (IEEE
BigData 2016), Washington, DC, USA, 2016, pp. 253–262.

[16] Y. Tang, H. Guo, T. Yuan, Q. Wu, X. Li, C. Wang, X. Gao, and J. Wu,
“OEHadoop: accelerate Hadoop applications by co-designing Hadoop
with Data Center Network,” IEEE Access, vol. 6, pp. 25 849–25 860,
2018.

[17] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing
in Big Data systems: a cross-industry study of MapReduce workloads,”
Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 1802–1813,
2012.

[18] A. Shinnar, D. Cunningham, V. Saraswat, and B. Herta, “M3R: increased
performance for in-memory Hadoop jobs,” Proceedings of the VLDB
Endowment, vol. 5, no. 12, pp. 1736–1747, 2012.

[19] D. Yan, X.-S. Yin, C. Lian, X. Zhong, X. Zhou, and G.-S. Wu, “Using
memory in the right way to accelerate Big Data processing,” Journal of
Computer Science and Technology, vol. 30, no. 1, pp. 30–41, 2015.

[20] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” in 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA’05), San Diego, CA, USA, 2005,
pp. 519–538.

[21] B. Lange and T. Nguyen, “A Hadoop use case for engineering data,”
in 12th International Conference on Cooperative Design, Visualization
and Engineering (CDVE’15), Mallorca, Spain, 2015, pp. 134–141.

[22] Apache HBase: Hadoop distributed Big Data store, https://hbase.apache.
org/, [Last visited: November 2018].

[23] Grid’5000: large-scale resource provisioning network, https:/ /www.
grid5000.fr, [Last visited: November 2018].

[24] C.-C. Chen, Y.-J. Chang, W.-C. Chung, D.-T. Lee, and J.-M. Ho,
“CloudRS: an error correction algorithm of high-throughput sequencing
data based on scalable framework,” in 2013 IEEE International Confer-
ence on Big Data (IEEE BigData 2013), Santa Clara, CA, USA, 2013,
pp. 717–722.

[25] S. Gnerre, I. MacCallum, D. Przybylski, F. J. Ribeiro, J. N. Burton, B. J.
Walker, T. Sharpe, G. Hall, T. P. Shea, S. Sykes, A. M. Berlin, D. Aird,
M. Costello, R. Daza, L. Williams, R. Nicol, A. Gnirke, C. Nusbaum,
E. S. Lander, and D. B. Jaffe, “High-quality draft assemblies of mam-
malian genomes from massively parallel sequence data,” Proceedings
of the National Academy of Sciences, vol. 108, no. 4, pp. 1513–1518,
2011.

[26] Microsoft Azure: cloud computing platform & services, https://azure.
microsoft.com, [Last visited: November 2018].

[27] DDBJ Sequence Read Archive (DRA), https://www.ddbj.nig.ac.jp/dra,
[Last visited: November 2018].

[28] J. Veiga, J. Enes, R. R. Expósito, and J. Touriño, “BDEv 3.0: energy
efficiency and microarchitectural characterization of Big Data processing
frameworks,” Future Generation Computer Systems, vol. 86, pp. 565–
581, 2018.

[29] R. R. Expósito, J. Veiga, J. González-Domı́nguez, and J. Touriño,
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